

How to securely operate an IPv6 network

https://tools.ietf.org/html/draft-ietf-opsec-v6-06

LACNIC 23

Enrique Davila enriqued@cisco.com Released: May 2015

Agenda

- Management Plane
- Control Plane
 - Routing Information
 - Neighbor Discovery
 - Control Plane Protection
- Data Plane
 - Anti-spoofing
 - Access Control List
- ➤ Telemetry

Summary

Management Plane

© 2015 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 3

Management over IPv6

• SSH, syslog, SNMP, NetFlow all work over IPv6

- Dual-stack management plane
 - More resilient: works even if one IP version is down
 - More exposed: can be attacked over IPv4 and IPv6
- As usual, infrastructure ACL is your friend as well as out-of-band management

Control Plane: Routing Protocols

Preventing IPv6 Routing Attacks Protocol Authentication

- BGP, ISIS, EIGRP no change:
 - An MD5 authentication of the routing update
- OSPFv3 has changed and pulled MD5 authentication from the protocol and instead rely on transport mode IPsec (for authentication and confidentiality)
 - But see RFC 6506 7166 (not yet widely implemented)
- IPv6 routing attack best practices

uluilu cisco

- Use traditional authentication mechanisms on BGP and IS-IS
- **Use IPsec** to secure protocols such as OSPFv3

BGP Route Filters

- Pretty obvious for customer links
- For peering, a relaxed one

```
ipv6 prefix-list RELAX deny 3ffe::/16 le 128
ipv6 prefix-list RELAX deny 2001:db8::/32 le 128
ipv6 prefix-list RELAX permit 2001::/32
ipv6 prefix-list RELAX deny 2001::/32 le 128
ipv6 prefix-list RELAX permit 2002::/16
ipv6 prefix-list RELAX deny 2002::/16 le 128
ipv6 prefix-list RELAX deny 0000::/8 le 128
ipv6 prefix-list RELAX deny fe00::/9 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
```

Source: http://www.space.net/~gert/RIPE/ipv6-filters.html

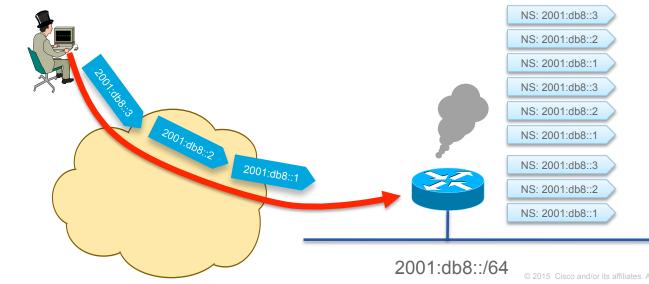
Link-Local Addresses vs. Global Addresses

- Link-Local addresses, fe80::/10, (LLA) are isolated
 - Cannot reach outside of the link
 - Cannot be reached from outside of the link $\ensuremath{\textcircled{\odot}}$
- Could be used on the infrastructure interfaces
 - Routing protocols (inc BGP) work with LLA
 - Benefit: no remote attack against your infrastructure: implicit infrastructure ACL
 - Note: need to provision loopback for ICMP generation (notably traceroute and PMTUD)
 - See also: RFC 7404
 - LLA can be configured statically (not the EUI-64 default) to avoid changing neighbor statements when changing MAC

```
interface FastEthernet 0/0
ipv6 address fe80::1/64 link-local
```

cisco

neighbor fe80::2%FastEthernet0/0


Control Plane: Neighbor Discovery

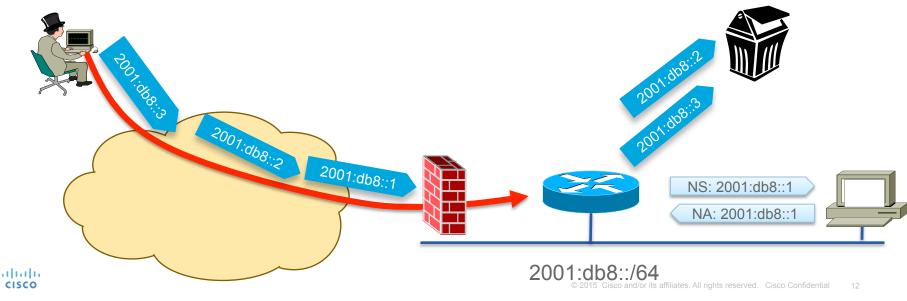
Scanning - Bad for CPU Remote Neighbor Cache Exhaustion RFC 6583

- · Potential router CPU/memory attacks if aggressive scanning
 - Router will do Neighbor Discovery... And waste CPU and memory
- Local router DoS with NS/RS/...

......

CISCO

Mitigating Remote Neighbor Cache Exhaustion


- Built-in rate limiter with options to tune it
 - Since 15.1(3)T: ipv6 nd cache interface-limit
 - Or IOS-XE 2.6: ipv6 nd resolution data limit
 - Destination-guard is part of First Hop Security phase 3
 - Priority given to refresh existing entries vs. discovering new ones (RFC 6583)
- Using a /64 on **point-to-point links** => a lot of addresses to scan!
 - Using /127 could help (RFC 6164)
- Internet edge/presence: a target of choice
 - Ingress ACL permitting traffic to specific statically configured (virtual) IPv6 addresses only
- Using infrastructure ACL prevents this scanning
 - iACL: edge ACL denying packets addressed to your routers
- Easy with IPv6 because new addressing scheme can be done ☺

http://www.insinuator.net/2013/03/ipv6-neighbor-cache-exhaustion-attacks-risk-assessment-mitigation-strategies-part-1

rijuju cisco

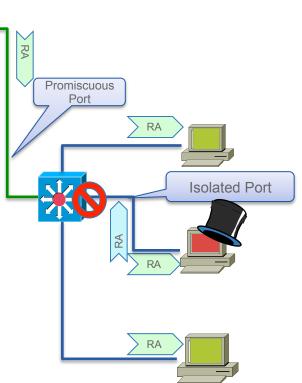
Simple Fix for Remote Neighbor Cache Exhaustion

- · Ingress ACL allowing only valid destination and dropping the rest
- NDP cache & process are safe
- Requires DHCP or static configuration of hosts

ARP Spoofing is now NDP Spoofing: Threats

- ARP is replaced by Neighbor Discovery Protocol
 - Nothing authenticated
 - Static entries overwritten by dynamic ones
- Stateless Address Autoconfiguration
 - rogue RA (malicious or not)
 - All nodes badly configured
 - DoS
 - Traffic interception (Man In the Middle Attack)
- Attack tools exist (from THC The Hacker Choice)
 - Parasit6
 - Fakerouter6
 - ...

uluili. cisco

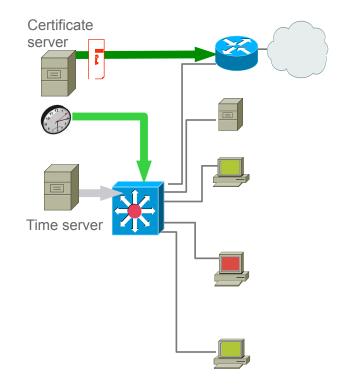

Mitigating Rogue RA: Host Isolation

 \geq

- Prevent Node-Node Layer-2 communication by using:
 - Private VLANs (PVLAN) where nodes (isolated port) can only contact the official router (promiscuous port)
 - WLAN in 'AP Isolation Mode'
 - 1 VLAN per host (SP access network with Broadband Network Gateway)
- Link-local multicast (RA, DHCP request, etc) sent only to the local official router: no harm
- Can break DAD

uluilu cisco

• Advertise the SLAAC prefix without the on-link bit to force router to do 'proxy-ND'



Secure Neighbor Discovery (SeND) RFC 3971

- Cryptographically Generated Addresses (CGA)
 - IPv6 addresses whose interface identifiers are cryptographically generated
- RSA signature option
 - Protect all messages relating to neighbor and router discovery
- Timestamp and nonce options
 - Prevent replay attacks
- Certification paths for authorized Routers
 - Anchored on trusted parties, expected to certify the authority of the routers on some prefixes
- Requires IOS 12.4(24)T
- Not available on host OS (Windows, OS/X, Android, iOS, ...)

Securing Link Operations: First Hop Trusted Device

- Advantages
 - central administration, central operation
 - Complexity limited to first hop
 - Transitioning lot easier
 - Efficient for threats coming from the link
 - Efficient for threats coming from outside
- Disadvantages
 - Applicable only to certain topologies
 - Requires first-hop to learn about end-nodes
 - First-hop is a bottleneck and single-point of failure

First Hop Security: RAguard since 2010 - RFC 6105

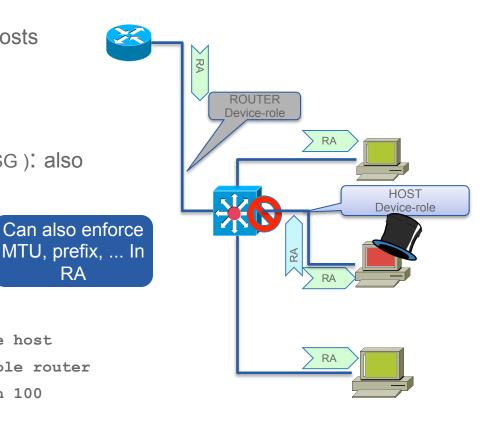
RA

Port ACL blocks all ICMPv6 RA from hosts

interface FastEthernet0/2

ipv6 traffic-filter ACCESS PORT in

access-group mode prefer port


• RA-guard lite (12.2(33)SXI4 & 12.2(54)SG): also dropping all RA received on this port

interface FastEthernet0/2

ipv6 nd raguard access-group mode prefer port

• RA-guard (12.2(50)SY, 15.0(2)SE)

ipv6 nd raguard policy HOST device-role host ipv6 nd raguard policy ROUTER device-role router ipv6 nd raquard attach-policy HOST vlan 100 interface FastEthernet0/0 ahah CISCO ipv6 nd raguard attach-policy ROUTER

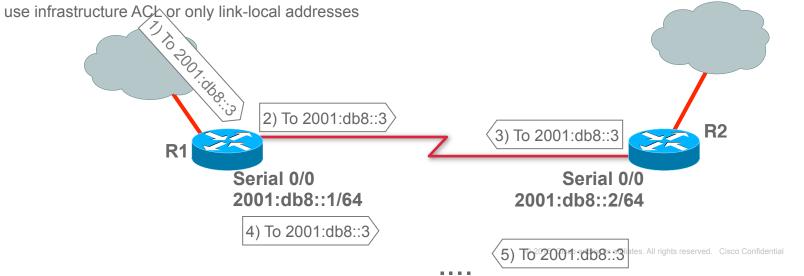
Control Plane Protection

Control Plane Policing for IPv6 Protecting the Router CPU

- Against DoS with NDP, Hop-by-Hop, Hop Limit Expiration...
- Software routers (ISR, 7200): works with CoPPr (CEF exceptions)
- See also RFC 6192
- Rate limiters

```
policy-map COPPr
class ICMP6_CLASS
  police 8000
class OSPF_CLASS
  police 200000
class class-default
  police 8000
!
control-plane cef-exception
  service-policy input COPPr
```

Data Plane

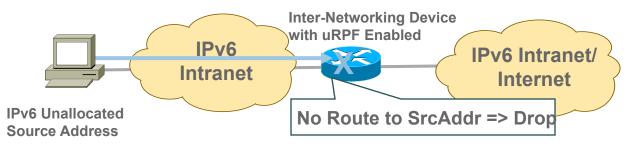

DoS Example **Ping-Pong over Physical Point-to-Point**

- Same as in IPv4, on real P2P without NDP, if not for me, then send it on the other side... Could produce looping traffic ٠
- Classic IOS and IOS-XE platforms implement RFC 4443 so this is not a threat •
 - Except on 76xx see CSCtg00387 (tunnels) and few others ٠
 - IOS-XR see CSCsu62728 •

addadda.

CISCO

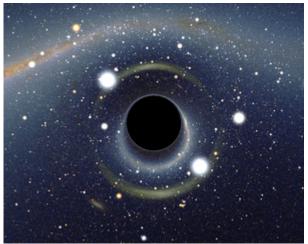
- Else use /127 on P2P link (see also RFC 6164) ٠
- Or use infrastructure ACL or only link-local addresses •



IPv6 Bogon and Anti-Spoofing Filtering

- IPv6 nowadays has its bogons:
 - http://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt
- Every network should implement two forms of anti-spoofing protections:
 - Prevent spoofed addresses from entering the network
 - Prevent the origination of packets containing spoofed source addresses
- Anti-spoofing in IPv6 same as IPv4

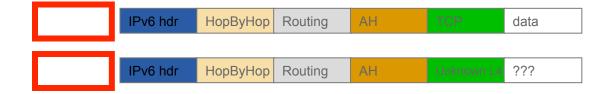
iliiilii cisco


• => Same technique for single-homed edge= uRPF

Remote Triggered Black Hole

- RFC 5635 RTBH is easy in IPv6 as in IPv4
- uRPF is also your friend for blackholing a source
- RFC 6666 has a specific discard prefix
 - 100::/64

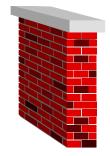
ılıılı cısco



Source: Wikipedia Commons

http://www.cisco.com/web/about/security/intelligence/ipv6_rtbh.html

Parsing the Extension Header Chain


- Finding the layer 4 information is not trivial in IPv6
 - Skip all known extension header
 - Until either known layer 4 header found => MATCH
 - Or unknown extension header/layer 4 header found... => NO MATCH

IOS IPv6 Extended ACL

- Can match on
 - Upper layers: TCP, UDP, SCTP port numbers, ICMPv6 code and type
 - TCP flags SYN, ACK, FIN, PUSH, URG, RST
 - Traffic class (only six bits/8) = DSCP, Flow label (0-0xFFFF)
- IPv6 extension header
 - **routing** matches any RH, **routing-type** matches specific RH
 - mobility matches any MH, mobility-type matches specific MH
 - dest-option matches any destination options
 - auth matches AH
 - **hbh** matches hop-by-hop (since 15.2(3)T)
- fragments keyword matches
 - Non-initial fragments
- undetermined-transport keyword does not match if
 - TCP/UDP/SCTP and ports are in the fragment
 - ICMP and type and code are in the fragment
 - Everything else matches (including OSPFv3, ...)
 - Only for deny ACE

Check your platform & release as your mileage can vary...

Telemetry

Available Tools

- Usually IPv4 telemetry is available
- SNMP MIB
 - Not always available yet on Cisco gears
- Flexible Netflow for IPv6
 - Available in : 12.4(20)T, 12.2(33)SRE
 - Public domain tools: nfsen, nfdump, nfcpad...

Flexible Flow Record: IPv6 Key Fields (Version 9)

IPv6		Routing	Transport		
IP (Source or	Devile ed Oire	Destination AS	Destination Port	TCP Flag: ACK	
Destination)	Payload Size	Peer AS	Source Port	TCP Flag: CWR	
Prefix (Source or	Packet Section	Traffic Index	ICMP Code	TCP Flag: ECE	
Destination)	(Header)	Forwarding Status	ІСМР Туре	TCP Flag: FIN	
Mask (Source or Destination)	Packet Section (Payload)	Is-Multicast	IGMP Type	TCP Flag: PSH	
Minimum-Mask (Source or Destination)	DSCP	IGP Next Hop	TCP ACK Number	TCP Flag: RST	
		BGP Next Hop	TCP Header Length	TCP Flag: SYN	
			TCP Sequence	TCP Flag: URG	
Protocol	Extension	Flow	Number		
Traffic Class	Hop-Limit	Sampler ID	TCP Window-Size	UDP Message Length	
Flow Label	Length	Direction	TCP Source Port	UDP Source Port	
Option Header	Next-header	Interface	TCP Destination	UDP Destination Port	
Header Length	Version	Input	Port		
Payload Length		Output	TCP Urgent Pointer		

Flexible Flow Record: IPv6 Extension Header Map

Bits 11-31	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Res	ESP	AH	PAY	DST	HOP	Res	UNK	FRA0	RH	FRA1	Res

- FRA1: Fragment header not first fragment
- RH: Routing header
- FRA0: Fragment header First fragment
- UNK: Unknown Layer 4 header (compressed, encrypted, not supported)
- HOP: Hop-by-hop extension header
- DST: Destination Options extension header
- PAY: Payload compression header
- AH: Authentication header
- ESP: Encapsulating Security Payload header
- Res: Reserved

CISCO

Key Takeaway

- As expected IPv6 secure operations are quite similar to IPv4 (Main differences at layer 2)
- Management plane
 - Protect management plane with access-class
- Control plane
 - Authenticate IGP
 - Consider the use of link-local on P-P links?
 - Mitigate rogue-RA with RA-guard
 - Configure control plane policing

• Data plane

- Beware of ping-pong on not /127 real P2P link
- Apply anti-spoofing, anti-bogons
- Use ACL where applicable, ACL must permit NDP
- Telemetry
 - SNMP MIB and Netflow v9 are your friends
 - Netflow can be used for inventory

cisco

CISCO TOMORROW starts here.